\(\int \frac {\cos ^3(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx\) [119]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 72 \[ \int \frac {\cos ^3(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d \sqrt {b \cos (c+d x)}}+\frac {2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b^2 d} \]

[Out]

2/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/b/d
/(b*cos(d*x+c))^(1/2)+2/3*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/b^2/d

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {16, 2715, 2721, 2720} \[ \int \frac {\cos ^3(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\frac {2 \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b^2 d}+\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d \sqrt {b \cos (c+d x)}} \]

[In]

Int[Cos[c + d*x]^3/(b*Cos[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*b*d*Sqrt[b*Cos[c + d*x]]) + (2*Sqrt[b*Cos[c + d*x]]*Sin[c
+ d*x])/(3*b^2*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rubi steps \begin{align*} \text {integral}& = \frac {\int (b \cos (c+d x))^{3/2} \, dx}{b^3} \\ & = \frac {2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b^2 d}+\frac {\int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx}{3 b} \\ & = \frac {2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b^2 d}+\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b \sqrt {b \cos (c+d x)}} \\ & = \frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d \sqrt {b \cos (c+d x)}}+\frac {2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.75 \[ \int \frac {\cos ^3(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sin (2 (c+d x))}{3 b d \sqrt {b \cos (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^3/(b*Cos[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + Sin[2*(c + d*x)])/(3*b*d*Sqrt[b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(189\) vs. \(2(88)=176\).

Time = 2.25 (sec) , antiderivative size = 190, normalized size of antiderivative = 2.64

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 b \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(190\)

[In]

int(cos(d*x+c)^3/(cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)/b*(4*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*
sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2
*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.10 \[ \int \frac {\cos ^3(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\frac {-i \, \sqrt {2} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, b^{2} d} \]

[In]

integrate(cos(d*x+c)^3/(b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/3*(-I*sqrt(2)*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*sqrt(b)*weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*sqrt(b*cos(d*x + c))*sin(d*x + c))/(b^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**3/(b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^3(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{3}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^3/(b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^3/(b*cos(d*x + c))^(3/2), x)

Giac [F]

\[ \int \frac {\cos ^3(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{3}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^3/(b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^3/(b*cos(d*x + c))^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(cos(c + d*x)^3/(b*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^3/(b*cos(c + d*x))^(3/2), x)